Tuning the Performance of the MMAS Heuristic

نویسندگان

  • Enda Ridge
  • Daniel Kudenko
چکیده

This paper presents an in-depth Design of Experiments (DOE) methodology for the performance analysis of a stochastic heuristic. The heuristic under investigation is Max-Min Ant System (MMAS) for the Travelling Salesperson Problem (TSP). Specifically, the Response Surface Methodology is used to model and tune MMAS performance with regard to 10 tuning parameters, 2 problem characteristics and 2 performance metrics—solution quality and solution time. The accuracy of these predictions is methodically verified in a separate series of confirmation experiments. The two conflicting responses are simultaneously optimised using desirability functions. Recommendations on optimal parameter settings are made. The optimal parameters are methodically verified. The large number of degrees-of-freedom in the MMAS design are overcome with a Minimum Run Resolution V design. Publicly available algorithm and problem generator implementations are used throughout. The paper should therefore serve as an illustrative case study of the principled engineering of a stochastic heuristic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters

Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...

متن کامل

Efficient and Robust Parameter Tuning for Heuristic Algorithms

The main advantage of heuristic or metaheuristic algorithms compared to exact optimization methods is their ability in handling large-scale instances within a reasonable time, albeit at the expense of losing a guarantee for achieving the optimal solution. Therefore, metaheuristic techniques are appropriate choices for solving NP-hard problems to near optimality. Since the parameters of heuristi...

متن کامل

Adaptive Tuning of Model Predictive Control Parameters based on Analytical Results

In dealing with model predictive controllers (MPC), controller tuning is a key design step. Various tuning methods are proposed in the literature which can be categorized as heuristic, numerical and analytical methods. Among the available tuning methods, analytical approaches are more interesting and useful. This paper is based on a proposed analytical MPC tuning approach for plants can be appr...

متن کامل

Optimizing a multi-product closed-loop supply chain using NSGA-II, MOSA, and MOPSO meta-heuristic algorithms

This study aims to discuss the solution methodology for a closed-loop supply chain (CLSC) network that includes the collection of used products as well as distribution of the new products. This supply chain is presented on behalf of the problems that can be solved by the proposed meta-heuristic algorithms. A mathematical model is designed for a CLSC that involves three objective functions of ma...

متن کامل

Effective heuristics and meta-heuristics for the quadratic assignment problem with tuned parameters and analytical comparisons

Quadratic assignment problem (QAP) is a well-known problem in the facility location and layout. It belongs to the NP-complete class. There are many heuristic and meta-heuristic methods, which are presented for QAP in the literature. In this paper, we applied 2-opt, greedy 2-opt, 3-opt, greedy 3-opt, and VNZ as heuristic methods and tabu search (TS), simulated annealing, and pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007